Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice

نویسندگان

  • Lodewijk J.A. Toonen
  • Frank Rigo
  • Haico van Attikum
  • Willeke M.C. van Roon-Mom
چکیده

Spinocerebellar ataxia type 3 (SCA3) is a currently incurable neurodegenerative disorder caused by a CAG triplet expansion in exon 10 of the ATXN3 gene. The resultant expanded polyglutamine stretch in the mutant ataxin-3 protein causes a gain of toxic function, which eventually leads to neurodegeneration. One important function of ataxin-3 is its involvement in the proteasomal protein degradation pathway, and long-term downregulation of the protein may therefore not be desirable. In the current study, we made use of antisense oligonucleotides to mask predicted exonic splicing signals, resulting in exon 10 skipping from ATXN3 pre-mRNA. This led to formation of a truncated ataxin-3 protein lacking the toxic polyglutamine expansion, but retaining its ubiquitin binding and cleavage function. Repeated intracerebroventricular injections of the antisense oligonucleotides in a SCA3 mouse model led to exon skipping and formation of the modified ataxin-3 protein throughout the mouse brain. Exon skipping was long lasting, with the modified protein being detectable for at least 2.5 months after antisense oligonucleotide injection. A reduction in insoluble ataxin-3 and nuclear accumulation was observed following antisense oligonucleotide treatment, indicating a beneficial effect on pathogenicity. Together, these data suggest that exon 10 skipping is a promising therapeutic approach for SCA3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon

Spinocerebellar ataxia type 3 is caused by a polyglutamine expansion in the ataxin-3 protein, resulting in gain of toxic function of the mutant protein. The expanded glutamine stretch in the protein is the result of a CAG triplet repeat expansion in the penultimate exon of the ATXN3 gene. Several gene silencing approaches to reduce mutant ataxin-3 toxicity in this disease aim to lower ataxin-3 ...

متن کامل

Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the...

متن کامل

Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3

Spinocerebellar ataxia type-3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in the ataxin-3 protein. Cleavage of mutant ataxin-3 by proteolytic enzymes yields ataxin-3 fragments containing the polyglutamine stretch. These shorter ataxin-3 fragments are thought to be involved in SCA3 pathogenesis due to their increased cellular toxicity and their involvement i...

متن کامل

CTCF Regulates Ataxin-7 Expression through Promotion of a Convergently Transcribed, Antisense Noncoding RNA

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder caused by CAG/polyglutamine repeat expansions in the ataxin-7 gene. Ataxin-7 is a component of two different transcription coactivator complexes, and recent work indicates that disease protein normal function is altered in polyglutamine neurodegeneration. Given this, we studied how ataxin-7 gene expression is regulated. The at...

متن کامل

Evaluation of Antisense Oligonucleotides Targeting ATXN3 in SCA3 Mouse Models

The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017